Abstract

Design procedures for three-stage CMOS operational transconductance amplifiers employing nested-Miller frequency compensation are presented in this paper. After describing the basic methodology on a Class-A topology, some modifications, to increase swing, slew-rate and current drive capability, are subsequently discussed for a Class-AB solution. The approaches developed are simple as they do not introduce unnecessary circuit constraints and yield accurate results. They are hence suited for a pencil-and-paper design, but can be easily integrated into an analog knowledge-based computer-aided design tool. Experimental prototypes, designed in a 0.35-mum technology by following the proposed procedures, were fabricated and tested. Measurement results were found in close agreement with the target specifications

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call