Abstract
Dry electrodes are a convenient alternative to wet electrodes for electroencephalography (EEG) acquisition systems. Dry electrodes are subject to a higher amount of noise at the electrode scalp interface and these effects can be worsened due to non-ideal design or improper placement on the head. In this work, we investigate a popular dry electrode design based on a number of resistive 'finger' shaped contacts. We conduct experiments comparing designs with varying numbers of fingers using two impedance measurement methods and show that sparser arrangements of fingers are more robust to varying use cases and are more effective at penetrating through hair on the scalp. We then show that these impedance measurement metrics could be used to sort individual fingers within one electrode according to quality of electrical contact. We show that the signals from individual fingers can differ from each other significantly due to differing local effects of impedance and noise, and demonstrate through experimental results that dynamically selecting only a subset of fingers with good contact impedance can improve the overall signal-to-noise ratio of the EEG signal from that electrode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Biomedical Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.