Abstract
This paper presents a methodology to design a spaceborne dual-beam along-track synthetic aperture radar interferometer to retrieve ocean surface velocity vectors. All related aspects and necessary tradeoffs are identified and discussed or reviewed, respectively. This includes a review of the measurement principle and the relation between baseline and sensitivity, the relation between wind and radar backscatter, a discussion of the observation geometry, including the antenna concept, polarization diversity, and all main error contributions. The design methodology consists of a sensitivity-based derivation of explicit instrument requirements from scientific requirements. In turn, this derivation is based on a statistical model for the interferometric phase error. This allows a quantitative, well-grounded instrument design offering an additional degree of freedom to the approach, which we call “noise-equivalent-sigma-zero requirement space.” Crucial tradeoffs for the system design, such as the resolution, the number of independent looks, the minimum wind speed, and the coherence and ambiguities, are pointed out and discussed. Finally, this paper concludes with a single platform system concept operating in Ku-band, which provides the measurement quality needed to achieve a surface velocity estimation accuracy of 5 cm/s, 200-km swath coverage, for 4 $\times$ 4 km2 L2-product resolution and winds starting at 3 m/s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.