Abstract

In this paper, the structural dependence of factor which mainly affects a bending loss property is theoretically investigated in all-solid photonic bandgap fibers (PBGFs). A design principle for realizing low bending losses is successfully figured out for the first-order photonic bandgap (PBG). In particular, one of the origins which causes the variation of bending loss property for each structural parameter is identified. In addition, we show that exploitation of a large pitch relative to a rod diameter, aiming to realize a large-mode area (LMA) structure, leads to a significant degradation of the bending loss property. Moreover, it is demonstrated that a V-value which is proposed for all-solid PBGFs is also reduced significantly for the LMA condition. The origin of the degradation is attributed to the newly-excited Bloch state which determines the second-order PBG edge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.