Abstract

Lithium-sulfur battery (LSB) has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems. The widely commercial application and development of LSB is mainly hindered by serious “shuttle effect” of lithium polysulfides (LiPSs), slow reaction kinetics, notorious lithium dendrites, etc. In various structures of LSB materials, array structured materials, possessing the composition of ordered micro units with the same or similar characteristics of each unit, present excellent application potential for various secondary cells due to some merits such as immobilization of active substances, high specific surface area, appropriate pore sizes, easy modification of functional material surface, accommodated huge volume change, enough facilitated transportation for electrons/lithium ions, and special functional groups strongly adsorbing LiPSs. Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above. In this review, recent progresses and developments on array structured materials applied in LSBs including preparation ways, collaborative structural designs based on array structures, and action mechanism analyses in improving electrochemical performance and safety are summarized. Meanwhile, we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances. Lastly, some directions and prospects about preparation ways, functional modifications, and practical applications of array structured materials in LSBs are generalized. We hope the review can attract more researchers' attention and bring more studying on array structured materials for other secondary batteries including LSB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.