Abstract

The study of substrate specificity of protein phosphatases (PPs) is very challenging since it is difficult to prepare a suitable phosphorylated substrate. Phosphoproteins, phosphorylated by a protein kinase, or chemically synthesized phosphopeptides are commonly used substrates for PPs. Both types of these substrates have their advantages and limitations. Phosphoproteins mimic more closely the physiologically relevant PP substrates, but their preparation is technically demanding. Synthetic phosphopeptides present advantages over proteins because they can be easily produced in large quantity and their amino acid sequence can be designed to contain potential determinants of substrate specificity. However, short peptides are less optimal compared to in vivo PP substrates and often display poor and variable binding to different matrices, resulting in low sensitivity in analysis of PP activity on solid support. In this work we utilize the intein-mediated protein ligation (IPL) technique to generate substrates for PPs, combining the advantages of proteins and synthetic peptides in one molecule. The ligation of a synthetic phosphopeptide to an intein-generated carrier protein (CP) with a one-to-one stoichiometry results in the formation of a ligated phosphoprotein (LPP). Three widely used assays, dot blot array, Western blot and ELISA were employed to study the PP activity on LPP substrates. Dephosphorylation was measured by detection of the remaining phosphorylation, or lack of it, with a phospho-specific antibody. The data show the advantage of LPPs over free peptides in assays on solid supports. LPPs exhibited enhanced binding to the matrices used in the study, which significantly improved sensitivity and consistency of the assays. In addition, saturation of the signal was circumvented by serial dilution of the assay samples. This report describes detailed experimental procedures for preparation of LPP substrates and their use in PP assays based on immobilization on solid supports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.