Abstract

This work is aimed at providing a new joining technology for C/SiC composites and investigating the influence of drilling holes, hole distribution (including ratios of edge distance to diameter (E/D), width to diameter (W/D) and hole distance to diameter (H/D)) and the number of applied pins on the mechanical properties of C/SiC substrates and joints. The mechanical testing results show that drilling holes and hole distribution greatly affects the mechanical properties of C/SiC substrates but when adopting an optimized design principle (E/D ⩾ 3, W/D ⩾ 3 and H/D ⩾ 3) the effect could be neglected. 1D C/SiC pins with higher shearing strength (107.2 MPa) are more suitable to join the substrates. With the increase of pins (1, 2 and 4), the bearing loads of the joints increase almost linearly, and the reliability of joints is also improved in that the fracture mode changes from the interlayer damage to the substrate rupture. Besides, the joining process generates uniform and dense joining layer (composition of ZrC and SiC) and a strong bonding without obvious interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.