Abstract

Assembling crystalline materials with high stability and high proton conductivity as a potential alternative to the Nafion membrane is a challenging topic in the field of energy materials. Herein, we concentrated on the creation and preparation of hydrazone-linked COFs with super-high stability to explore their proton conduction. Fortunately, two hydrazone-linked COFs, TpBth and TaBth, were solvothermally prepared by using benzene-1,3,5-tricarbohydrazide (Bth), 2,4,6-trihydroxy-benzene-1,3,5-tricarbaldehyde (Tp), and 2,4,6-tris(4-formylphenyl)-1,3,5-triazine (Ta) as monomers. Their structures were simulated by Material Studio 8.0 software and confirmed by the PXRD pattern, demonstrating a two-dimensional framework with AA packing. The presence of a large number of carbonyl groups as well as -NH-NH2- groups on the backbone is responsible for their super-high water stability as well as high water absorption capacity. AC impedance tests demonstrated a positive correlation between the water-assisted proton conductivity (σ) of the two COFs and the temperature and humidity. Under 100 °C/98% RH, the highest σ values of TpBth and TaBth can reach 2.11 × 10-4 and 0.62 × 10-5 S·cm-1, which are among the high σ values of the reported COFs. Their proton-conductive mechanisms were highlighted by structural analyses as well as N2 and H2O vapor adsorption data and activation energy values. Our systematic research affords ideas for the synthesis of proton-conducting COFs with high σ values.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call