Abstract

This study presents critical aspects and their influence on the performance of hybrid power systems combining a pressurized solid oxide fuel cell (SOFC) and a gas turbine (GT). Two types of hybrid system configurations with internal and external reforming have been analyzed. In order to examine the effect of matching between the fuel cell temperature and the turbine inlet temperature on the hybrid system performance, we considered air bypass after the compressor as well as additional fuel supply to the turbine side. This study focuses on the limitation of the temperature difference at the fuel cell stack and its influence on the performances of the two hybrid systems. Performances of the hybrid systems are also compared with those of simple SOFC systems, and the extent of performance enhancement is evaluated. The system with internal reforming gives better efficiency and power capacity for all design conditions than the system with external reforming under the same constraints. Its efficiency gain over the SOFC only system is considerable, while that of the system with external reforming is far less. As the temperature difference at the cell becomes smaller, the system performance generally degrades. The system with internal reforming is less influenced by the constraint of the cell temperature difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.