Abstract
Stem‐cell behavior is regulated by the material properties of the surrounding extracellular matrix, which has important implications for the design of tissue‐engineering scaffolds. However, our understanding of the material properties of stem‐cell scaffolds is limited to nanoscopic‐to‐macroscopic length scales. Herein, a solid‐state NMR approach is presented that provides atomic‐scale information on complex stem‐cell substrates at near physiological conditions and at natural isotope abundance. Using self‐assembled peptidic scaffolds designed for nervous‐tissue regeneration, we show at atomic scale how scaffold‐assembly degree, mechanics, and homogeneity correlate with favorable stem cell behavior. Integration of solid‐state NMR data with molecular dynamics simulations reveals a highly ordered fibrillar structure as the most favorable stem‐cell scaffold. This could improve the design of tissue‐engineering scaffolds and other self‐assembled biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.