Abstract

Solving large-scale PDE-constrained optimization problems presents computational challenges due to the large dimensional set of underlying equations that have to be handled by the optimizer. Recently, projection-based nonlinear reduced-order models have been proposed to be used in place of high-dimensional models in a design optimization procedure. The dimensionality of the solution space is reduced using a reduced-order basis constructed by Proper Orthogonal Decomposition. In the case of nonlinear equations, however, this is not sufficient to ensure that the cost associated with the optimization procedure does not scale with the high dimension. To achieve that goal, an additional reduction step, hyper-reduction is applied. Then, solving the resulting reduced set of equations only requires a reduced dimensional domain and large speedups can be achieved. In the case of design optimization, it is shown in this paper that an additional approximation of the objective function is required. This is achieved by the construction of a surrogate objective using radial basis functions. The proposed method is illustrated with two applications: the shape optimization of a simplified nozzle inlet model and the design optimization of a chemical reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.