Abstract

This paper presents a methodology for design optimization of decomposed systems in the presence of uncertainties. We extend the analytical target cascading (ATC) formulation to probabilistic design by treating stochastic quantities as random variables and parameters and posing reliability-based design constraints. We model the propagation of uncertainty throughout the multilevel hierarchy of elements that comprise the decomposed system by using the advanced mean value (AMV) method to generate the required probability distributions of nonlinear responses. We utilize appropriate metamodeling techniques for simulation-based design problems. A simple yet illustrative hierarchical bi-level engine design problem is used to demonstrate the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.