Abstract

The objective of this study is to design optimized frame under fatigue condition through finite element analysis (FEA) for the off-highway electric drive dump truck. In today’s globalization world, the off-highway sectors started adopting advance technologies to get the optimized and reliable products. Nowadays, the off-highway vehicles have to be cost-effective and must have high power-to-weight ratio for the better fuel efficiency and to increase life of the critical components such as powertrain aggregate engine, alternator, etc. In the mining sector, desirability depends on the economics of operation in terms of ‘cost per ton’ of material transported. The cost per ton can be achieved only through the higher payload equipment and lower cost per ton approach. In case of open cast mine, the lower cost per ton can be achieved by adopting higher capacity dump truck with optimized weight and ease of maintenance of the electric drive dump truck. Therefore, this study has made an attempt to design the optimized frame rail size under fatigue condition through FEA method for the electric dumper. It covers how and when to adopt the optimization approach while designing frame structure. Also, it has emphasized that the fatigue load is one of worst load conditions for the frame design, where the complete frame will be twisted under left and right ramp conditions. Under these conditions, the optimum frame rail was designed with optimum plate thickness to meet the design criteria. The frame rail with different sizes and plate thickness were considered and analysed under the same alternate load conditions. Based on the historical data of frame with respect to the frame life, the optimized frame rail size and required plate thickness of frame were determined at the initial stage of design. This approach results in optimized frame and meets targeted power to weight ratio. Finally, this optimized design enhances the life of powertrain aggregates and improves fuel efficiency of vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call