Abstract

There has been a recent interest to explore the shape and kinematics parameters of distinct pterosaurs from their fossil records. Clearly, far more evidence is needed to understand the nuances of dinosaurs flight. A multiobjective aerodynamic optimization problem of the wing kinematics and planform of a pterosaur replica ornithopter designed by Aerovironment is performed. Objective functions include minimization of the required cycle-averaged aerodynamic power and maximization of the propulsive efficiency. It is found that inclusion of the inertial power requirements is necessary for a physical and proper formulation of the optimization problem. Furthermore, the mere addition of the inertial power requirements is not enough to obtain reasonable results. Rather, one has to consider a partial (or even zero) elastic energy storage. The minimum power kinematic parameters closely match those of the previously designed pterosaur replica. Nevertheless, the obtained efficiency for such a design (minimum power) is 10%, which is considerably lower than the maximum possible efficiency for the used planform (40%). Furthermore, the optimized planform for maximum efficiency of the pterosaur yields to an increase in the propulsive efficiency by 6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call