Abstract

Double-pipe counter-flow heat exchangers are considered more suitable for heat recovery in the heat transfer industry. Numerous studies have been conducted to develop static tools for optimizing operating parameters of heat exchangers. Using this study, an improved heat exchanger system will be developed. This is frequently used to solve optimization problems and find optimal solutions. The Taguchi method determines the critical factor affecting a specific performance parameter of the heat exchanger by identifying the significant level of the factor affecting that parameter. Gray relational analysis was adopted to determine the gray relational grade to represent the multi-factor optimization model, and the heat exchanger gray relation coefficient target values that were predicted have been achieved using ANN with a back propagation model with the Levenberg–Marquardt drive algorithm. The genetic algorithm improved the accuracy of the gray relational grade by assigning gray relational coefficient values as input to the developed effective parameter. This study also demonstrated significant differences between experimental and estimated values. According to the results, selecting the parameters yielded optimal heat exchanger performance. Using a genetic algorithm to solve a double-pipe heat exchanger with counterflow can produce the most efficient heat exchanger.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call