Abstract
The current and potential applications of atmospheric pressure plasmas in medicine generate an increasing need to develop safe and reliable plasma devices for patient treatment. This paper shows how the estimation of safety risks, the stability of the generated plasma, and the effectiveness in the aimed application can orientate the design process of a specific atmospheric pressure plasma device intended for clinical use. A promising plasma jet device operated with air is optimized, leading to a configuration with a more advanced design that reduces the temperature of the effluent, prevents the material degradation and improves the isolation of the high voltage components. The effects of the plasma jet treatment are investigated by chemical analysis of demineralized water and inactivation tests on E. coli cultures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.