Abstract

This paper proposes a new high power density permanent magnet (PM) motor design for traction applications to achieve the 50kW/L target set by the US Department of Energy by increasing the torque capability and operating speed compared to conventional PM machine topologies. A large-scale multi-objective design optimization based on 2D finite element analysis (FEA) and differential evolution algorithm was conducted to achieve the best trade-off among high efficiency, high power density and high power factor. The torque-speed envelopes are also checked for the Pareto front designs to make sure they have a constant power speed ratio of at least 3:1. An open frame lab prototype (OFLP) motor has been fabricated and tested to validate the principle of operation and design optimization approach, and to identify the potential challenges in manufacturing and testing. Ongoing work on further pushing the electromagnetic performance to the limit and improving the manufacturing and cooling techniques are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.