Abstract
A shell and tube heat exchanger with staggered baffles (STHX-ST) is designed by integrating the features of both segmental and helical baffles, which produces a helical flow in the shell side. This work studies the effect of different parameters on the performance of the STHX-ST through numerical analysis. Shell inner diameter, tube outer diameter, baffle cut, baffle spacing, and baffle orientation angle are the design parameters. Multi-objective optimization using genetic algorithm (GA) is carried out to maximize the heat transfer rate while minimizing the pressure drop. The objective functions for optimization are approximated using artificial neural networks (ANNs). The training data for ANNs are simulated from CFD analysis as per the Taguchi orthogonal test table. The optimal solution obtained from the Pareto front has a maximum heat transfer of 154555 W for a minimum pressure drop of 88083.86 Pa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.