Abstract

In some feeding systems, the supersonic impulse turbines are used when the fluid mass flow is low in order to achieve high specific work. To prevent losses due to low blade aspect ratio and issues related to manufacturing and industrial problems, the turbine is used in partial admission conditions. Studies show that the turbine efficiency is highly dependent on the amount of partial admission coefficient. The turbine efficiency in full admission is high, but the use of partial admission lowers the additional losses. Therefore, there will be a percentage of partial admission in which the turbine will have the highest efficiency. The aim of this work is to achieve the optimum partial admission for a special impulse turbine as a case study. Therefore, in the beginning, an appropriate model of losses is presented. Then, using a nonlinear design optimization code, the partial admission of an impulse supersonic turbine is optimized. This code is written using a genetic algorithm. Then, using three-dimensional numerical analysis, the optimal model will be selected. In the optimization problem, the turbine efficiency is the objective function. The amount of design parameters and constraints used in this process are ten and eight, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.