Abstract

Purpose – The purpose of this paper is computer-aided engineering analysis of the recently proposed side-vent-channel concept for mitigation of the blast-loads resulting from a shallow-buried mine detonated underneath a light tactical vehicle. The concept involves the use of side-vent-channels attached to the V-shaped vehicle underbody, and was motivated by the concepts and principles of operation of the so-called “pulse detonation” rocket engines. By proper shaping of the V-hull and side-vent-channels, venting of supersonically expanding gaseous detonation products is promoted in order to generate a downward thrust on the targeted vehicle. Design/methodology/approach – The utility and the blast-mitigation capacity of this concept were examined in the prior work using computational methods and tools which suffered from some deficiencies related to the proper representation of the mine, soil, and vehicle materials, as well as air/gaseous detonation products. In the present work, an attempt is made to remove some of these deficiencies, and to carry out a bi-objective engineering-optimization analysis of the V-hull and side-vent-channel shape and size for maximum reduction of the momentum transferred to and the maximum acceleration acquired by the targeted vehicle. Findings – Due to the conflicting nature of the two objectives, a set of the Pareto designs was identified, which provide the optimal levels of the trade-off between the two objectives. Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the side-vent-channel blast-mitigation concept.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.