Abstract

This paper presents the design optimization of a linkage-based wheel mechanism with two degrees of freedom, for stable step climbing. The mechanism has seven rotational joints and one prismatic joint. Kinematic and dynamic analyses of the mechanism were performed. The design was optimized in terms of linkage length and architecture to better manipulate the mechanism in its workspace, which was defined here by the targeted step size, as well as to ensure stability while climbing stairs. Optimization by genetic algorithm was performed using MATLAB. The optimized mechanism exhibited enhanced torque transmission from the input torque to the exerted for at the lobe of the wheel. Compliance control of the transformation will be addressed in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.