Abstract

High-speed, area-efficient, and low-power Montgomery modular multipliers for RSA algorithm have been developed for digital signature and user authentication in high-speed network systems and smart card LSIs. The multiplier-accumulators (MAC) in the developed Montgomery modular multipliers have a non-identical multiplicand/multiplier word length organization. This organization can eliminate the bandwidth bottleneck associated with a data memory, and enables to use a single-port memory for area and power reductions. The developed MAC is faster than the conventional identical word length organization due to the shortened critical path. For smart card applications, an area-efficient architecture with 42 kgates can produce 1.2 digital signatures in a second for 2,048-bit key length with the power consumption of 6.8 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.