Abstract

This paper aims to design a novel bionic fish propelled by oscillating paired pectoral fins. Flapping motion deformation of the nature sample, the cow-nosed ray, is realized with simple mechanical structure through optimization. Locomotion analysis of the nature sample under linear cruise swimming conditions is carried out. Simplified mathematical models of the pectoral fin are obtained to be the design foundation of the bionic fin rays and the bionic fish. The number of fin rays is decided according to the passing kinematic wave shape and number. Distance and structure parameters are optimized, and determined by the minimum area error method. A novel two-stage slide–rocker mechanism is designed to fulfill the driving requirements with only one servo motor. System design of a new bionic fish robot is presented, including the mechanical design and the control method. Main bionic characteristics extracted from the cow-nosed ray are fulfilled by the prototype and verified by experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call