Abstract

In this study design optimization for 4-poled 1500 rpm 25 kVA synchronous generator (SG) is performed. The aim is to determine the optimum factor levels for the design parameters namely slot opening width (Bs0), height, and width to keep the responses namely ‘pole-body flux density’ and ‘air-gap flux density’ distributions in a desired range. The target values are determined as 1.75 Tesla and 0.9 Tesla for the ‘pole-body flux density’ and ‘air-gap flux density’ respectively. For this purpose, Response Surface Methodology (RSM) is used for optimization. Numerical simulations are performed in the Maxwell environment and the optimization by RSM is performed by Minitab statistical package. Desired goals were achieved and optimum factor levels were determined with RSM. Then the results of RSM are compared by Genetic Algorithm (GA), Particle Swarm Optimization algorithm (PSO), and Modified Social Group Optimization (MSGO) algorithm. These methods are evaluated together in terms of advantages and disadvantages. The comparisons indicate that using RSM provides acceptable results without performing coding effort and also provides users to understand the relations visually between the factors and the responses by the aid of ‘Minitab Response Optimizer Module’.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.