Abstract

Surrogate models have been widely studied for optimization tasks in the domain of engineering design. However, the expensive and time-consuming simulation cycles needed for complex products always result in limited simulation data, which brings a challenge for building high accuracy surrogate models because of the incomplete information contained in the limited simulation data. Therefore, a method that builds a surrogate model and conducts design optimization by integrating limited simulation data and engineering knowledge through Bayesian optimization (BO-DK4DO) is presented. In this method, the shape engineering knowledge is considered and used as derivative information which is integrated with the limited simulation data with a Gaussian process (GP). Then the GP is updated sequentially by sampling new simulation data and the optimal design solutions are found by maximizing the GP. The aim of BO-DK4DO is to significantly reduce the required number of computer simulations for finding optimal design solutions. The BO-DK4DO is verified by using benchmark functions and an engineering design problem: hot rod rolling. In all scenarios, the BO-DK4DO shows faster convergence rate than the general Bayesian optimization without integrating engineering knowledge, which means the required amount of data is decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call