Abstract
Abstract Nearly/net zero energy buildings (nZEBs) have attracted increasing attention particularly when high and complex performance is required in terms of energy-saving, indoor thermal comfort, environmental friendliness and grid-friendliness. However, there is no exact approach at present for the design and control of buildings to achieve the nearly/net zero energy target. This is mainly due to the complex interplay of energy production/consumption/storage systems as well as the automatically and manually controlled systems/elements in the highly integrated buildings. This paper therefore presents a comprehensive review on the issues related to the design and control of these buildings, i.e. the effects of climate/site on design, design optimization methods, uncertainty and sensitivity analysis for robust design and system reliability, efficient and optimal control of high efficient generation systems and energy storage systems for alleviating/shifting the peak load, model predictive control for fast responses to smart grid, and adoption of advanced smart technologies. An outline of the progress of nZEBs is presented by summarizing the internationally known nZEBs identified including 30 case studies on the design strategies applied and the actual building performance. This review could also support the future development of methods that address the design and control of buildings with a holistic view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.