Abstract

In this paper, the design, optimization and critical analysis of Surface Plasmon Resonance sensor is presented, which works on angular interrogation method. It comprises of five layers which are “Prism–Copper–Germanium–Graphene–Sensing medium”. The influence of the chemical potential (µc) of graphene on the sensor performance has been studied in detail. Thickness of all the layers has been optimized. Remarkable results are achieved for the optimal thickness of copper and germanium layers as 50 nm and 6 nm respectively, while two layers of graphene having µc of 0.5 eV are introduced to boost-up the performance. Best results in terms of detection accuracy, sensitivity and quality factor have been achieved that fulfill the necessary requirements for good sensing applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call