Abstract

An ultrathin nano photodiode array fabricated in a flexible substrate can be an ideal therapeutic replacement for degenerated photoreceptor cells damaged by Age-related Macula Degeneration (AMD) and Retinitis Pigmentosa (RP), such as retinal infections. Silicon-based photodiode arrays have been attempted as artificial retinas. Considering the difficulties caused by hard silicon subretinal implants, researchers have diverted their attention towards organic photovoltaic cells-based subretinal implants. Indium-Tin Oxide (ITO) has been a favorite choice as an anode electrode. A mix of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyleste (P3HT: PCBM) has been utilized as an active layer in such nanomaterial-based subretinal implants. Though encouraging results have been obtained during the trial of such retinal implants, the need to replace ITO with a suitable transparent conductive electrode will be a suitable substitute. Further, conjugated polymers have been used as active layers in such photodiodes and have shown delamination in the retinal space over time despite their biocompatibility. This research attempted to fabricate and characterize Bulk Hetero Junction (BHJ) based Nano Photo Diode (NPD) utilizing Graphene-polyethylene terephthalate (G-PET)/semiconducting Single-Wall Carbon Nano Tubes (s-SWCNT): fullerene (C60) blend/aluminium (Al) structure to determine the issues in the development of subretinal prosthesis. An effective design approach adopted in this analysis has resulted in developing an NPD with an Efficiency of 10.1% in a non-ITO-driven NPD structure. Additionally, the results show that the efficiency can be further improved by increasing active layer thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call