Abstract
Modern Automobiles expect a high performance from its engines, which in turn places its requirements on the piston and cylinder components. Hence the piston has to deal with harsher, and tougher thermal and mechanical conditions. It has to undergo higher operating temperatures and pressures as well as higher speeds and at the same time keeping a check on the emissions. Pistons play a key role in increasing engine efficiency by reducing weight and frictional losses. This has made it essential to devise and search unique and creative concepts and materials for Pistons repeatedly, which offers what the engine demands. In this work Aluminium Alloy-4032 has been selected as the piston material of a 4-Stroke Diesel Engine and the piston rings are made of grey cast iron and alloy steel. Piston is designed by analytical methods taking both thermal and structural effects into consideration, then modelled on CATIA V5 and the analysis of structural deformation due to thermal stresses has been done using Finite Element Analysis of Steady State Thermal and its effect on static structure using Analysis software ANSYS
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.