Abstract

Alzheimer's disease (AD) is considered one of the main progressive chronic diseases in elderly individuals. Early diagnosis using related biomarkers, specifically beta-amyloid peptide (Aβ), allows finding expected treatment routes. Here, we developed an electrochemical aptasensing platform for AD by employing a glassy carbon electrode (GCE) modified with a layer of jagged gold (JG) nanostructure (diameter: 60-185nm) and graphene oxide-carboxylic acid functionalized multiwalled carbon nanotubes (GO-c-MWCNTs) nanocomposite. These surface modifications acted as the signal amplifier and provided an optimum nano-interface substrate for immobilizing aptamer strands. The measurements of Aβ were performed via differential pulse voltammetry (DPV), and the aptasensor detected the analyte in a linear range from 0.1pgmL-1 to 1ngmL-1, with an estimated limit of detection (LOD) of about 0.088pgmL-1 (S/N = 3). The aptasensor showed sufficient stability (11days), reversibility (three times), and reproducibility (five times re-fabrication with relative standard deviation (RSD): 1.27). The potential interfering agents showed negligible impact on the sensing performance. Finally, the application of the aptasensor was evaluated in the presence of 10 serum samples, and the recovery values were from 93 to 110.1%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call