Abstract
A capacitive micromachined ultrasound transducer (CMUT) was engineered and functionalized with zeolitic imidazolate framework-8 (ZIF-8) dispersed in a photoresist AZ1512HS (AZ) matrix to function as a gravimetric gas sensor. The sensor response was recorded in the presence of nitrogen, argon, carbon dioxide, and methane gases as well as water, acetylene, a propane/butane mixture, n-hexane, gasoline, and diesel vapors. The photoresist matrix alone was found to have a negligible response to all the gases and vapors, except for water vapor. No visible difference in sensor response was detected when switching from nitrogen to methane gas. However, a strong shift in the sensor resonance frequency was observed when exposed to higher hydrocarbons, ranging from 1 kHz for acetylene to 7.5 kHz for gasoline. Even longer-chain hydrocarbons, specifically kerosene and more so diesel, had a significantly reduced sensor frequency shift compared with gasoline. Sensors functionalized with a thin film of AZ+ZIF-8 demonstrated higher sensitivity in their response to a hydrocarbon molecular mass than without functionalization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.