Abstract

The use of heterojunctions with Z-scheme photocatalysts holds great promise for enhancing the photocatalytic degradation efficiency of antibiotics. In this study, we report the construction of a novel heterostructure by in-situ growth of the ultrathin polymeric carbon nitride (PCN) on the electrospun Bi2WO6 nanofibers for improved photocatalytic tetracycline (TC) degradation under visible light. Our gas–solid reaction strategy enables the formation of uniform and intimate junctions between the PCN nanosheets and the Bi2WO6 nanofibers, resulting in a well-contacted interface that remarkably accelerates the separation and transfer of the photogenerated charge carriers. The optimized PCN/Bi2WO6 photocatalyst exhibits a significant TC degradation rate of 89.5 % under visible light, which is 1.4-fold and 2.0-fold of the pure PCN and Bi2WO6 photocatalysts, respectively. Our innovative design philosophy opens up a new horizon for the development of efficient Z-scheme heterostructured photocatalysts for antibiotic degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call