Abstract
According to the Department of Energy, lighting accounts for 15% of global electricity consumption; this results in a substantial need for inexpensive, efficient lighting sources. Laser lighting is anticipated to take the lighting industry by storm because it promises to solve such problems of efficiency and pricing among many other advantages. As a consequence of the inherent laser properties, the laser diodes must be operated with a constant, spike-less current source. This research paper aims to design and implement a blue laser diode driver (LDD) to be used in tandem with a YAG phosphor, for the operation of white laser-based light. Hence, the resulting white light from the laser is used in smart lighting systems, in which it couples as a transmitter in a free-space optical (FSO) communication system, i.e. Light Fidelity (Li-Fi); the sensitivity of this application creates the absolute must for an efficient LDD. First, the driver circuit is simulated according to the specifications of the laser diode. The custom LDD considers feedback system for current regulation, transient and electrostatic discharge protection, and an efficient heat dissipation system for prolonged laser productivity. Moreover, the LDD circuit is modified to enable modulation of light for the Li-Fi application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.