Abstract

An <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</i> -band and two <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ka</i> -band monolithic microwave integrated circuit (MMIC) common drain Colpitts oscillators using a parasitic cancellation technique are designed and fabricated in a 0.2-μm GaAs pHEMT technology with a <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> of 60 GHz. The parasitic cancellation technique significantly improves the negative resistance and increases the maximum operating frequency, which is suitable for microwave and millimeter-wave applications. An in-depth theoretical analysis of the Miller effect and insights in the behavior of the input impedance with the parasitic cancellation are provided. The effect of the <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Q</i> -factor of the inductor used in the cancellation, and the impact of the parasitic cancellation technique on phase noise and frequency tuning range are analyzed and discussed in detail. The <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">X</i> -band design has a measured phase noise of -117.5 dBc/Hz at 1 MHz offset with an output power of -9.3 dBm . The first <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ka</i> -band design has a measured phase noise of -94 dBc/Hz at 1 MHz offset with an output power of +0.2 dBm. The second <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ka</i> -band design providing more flexibility has a measured phase noise of -98.5 dBc/Hz at 1 MHz offset with an output power of + 0.3 dBm. The two <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Ka</i> -band designs achieve very high <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">OSC</sub> / <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">f</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">T</sub> ratios and also demonstrate performance comparable to the best previously published oscillators in a similar frequency range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.