Abstract

for measuring high-energy neutrons. The detection eciency is estimated to be about 88% for neutron energies larger than 50 MeV and decreases to 78% at 30 MeV. We have estimated the energy resolution as a function of the incident energy based on the time-of-flight method. Assuming an ideal detector performance with null time resolution, the relative energy resolution decreases as the incident neutron energy increases. However, under a more realistic situation with a finite time resolution for the detector, the energy resolution monotonically increases with increasing the neutron energy, following a logarithmic function. Imposing an energy resolution of better than 3% at the highest neutron energy, we find the nominal position of the hybrid calorimeter to be 15 m from the target for a time resolution of 1.0 ns, but the detector needs to be free to move closer to or farther from the target, depending on the physics goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.