Abstract

In this paper, we present voltage-mode and current-mode computational circuits using floating-gate MOS (FGMOS) transistors, operating in saturation region. The circuits are designed using two FGMOS basic-cells, each one formed by three floating-gate transistors with common source. The first basic cell is connected in voltage mode, while the second one is connected in current-mode configuration in order to implement voltage and current-mode circuits, respectively. Using the basic FGMOS cells, voltage and current squarers, four-quadrant multipliers and a current square rooter are designed. Mismatches and distortion analysis for the proposed circuits have been elaborated. The most important advantages are, rail-to-rail dynamic input range, low distortion and ability for either differential or single-ended input signals. Simulation results demonstrate the feasibility and the accuracy of the circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call