Abstract

AbstractHyperconnected hybrid organosilicate glass networks formed by hyperstiff precursor molecules with certain geometrical characteristics can lead to exceptional elastic properties superior to that of fully dense silica. Carbon‐ and silicon‐containing precursors with defined molecular planarity are introduced and a new design strategy where both the network connectivity and the precursor geometry are effectively utilized to enhance elastic properties is proposed. The geometrical features rendering a precursor molecule as hyperstiff are identified through molecular dynamics simulations and constraint analyses by calculating the degree of nonaffine deformations. Nonaffine deformations have not been previously examined for organosilicate hybrid glass networks and are a fundamental new approach to reveal the combined impact of precursor geometry and connectivity on the mechanical behavior of hybrid glass networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.