Abstract
In this paper, ultra-low-voltage circuit techniques are presented for CMOS RF frontends. By employing a complementary current-reused architecture, the RF building blocks including a low-noise amplifier (LNA) and a single-balanced down-conversion mixer can operate at a reduced supply voltage with microwatt power consumption while maintaining reasonable circuit performance at multigigahertz frequencies. Based on the MOSFET model in moderate and weak inversion, theoretical analysis and design considerations of the proposed circuit techniques are described in detail. Using a standard 0.18-mum CMOS process, prototype frontend circuits are implemented at the 5-GHz frequency band for demonstration. From the measurement results, the fully integrated LNA exhibits a gain of 9.2 dB and a noise figure of 4.5 dB at 5 GHz, while the mixer has a conversion gain of 3.2 dB and an IIP3 of -8 dBm. Operated at a supply voltage of 0.6 V, the power consumptions of the LNA and the mixer are 900 and 792 muW, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.