Abstract

This paper proposes a method for chaotic radar signal (CRS) design with ultralow sidelobe performance. We first modulate the group delay (MGD) of a radar signal using a chaotic mapping sequence in the frequency domain, and then we transform the radar signal to its time domain form by inverse Fourier transformation. The designed CRS has ultralow sidelobe owing to its flat power spectrum density (PSD). Meanwhile, its ambiguity function is thumbtack, and the amplitudes of both in-phase and quadrature components are close to Gaussian noise. Both numerical simulation and experimental results demonstrate the ultralow sidelobe performance of the designed CRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call