Abstract

A method to design arbitrary three-way power dividers with ultra-wideband performance is presented. The proposed devices utilize a broadside-coupled structure, which has three coupled layers. The method assumes general asymmetric coupled layers. The design approach exploits the three fundamental modes of propagation: even-even, odd-odd, and odd-even, and the conformal mapping technique to find the coupling factors between the different layers. The method is used to design 1 : 1 : 1, 2 : 1 : 1, and 4 : 2 : 1 three-way power dividers. The designed devices feature a multilayer broadside-coupled microstrip-slot-microstrip configuration using elliptical-shaped structures. The developed power dividers have a compact size with an overall dimension of 20 mm 30 mm. The simulated and measured results of the manufactured devices show an insertion loss equal to the nominated value 1 dB. The return loss for the input/output ports of the devices is better than 17, 18, and 13 dB, whereas the isolation between the output ports is better than 17, 14, and 15 dB for the 1 : 1 : 1, 2 : 1 : 1, and 4 : 2 : 1 dividers, respectively, across the 3.1-10.6-GHz band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.