Abstract

We propose and design a multi-stage cascaded scanning laser ophthalmoscope (SLO) for ultra-wide field (UWF), which uses conicoid mirrors, constructed by conjugation of pupil plane. The vergence uniformity and the angular magnification of a cascaded conicoid mirrors (CCM) system are analyzed recursively and optimized preliminarily to achieve high quality imaging with UWF, and the optimal system with the model eye are obtained by simulation and optimization. Two-stage and three-stage cascaded systems are designed with this method, and the formulas of beam vergence and angular magnification are obtained by theoretical derivation. As compared to the two-stage CCM system, the proposed three-stage cascaded UWF SLO has superior performance in imaging quality. Its average RMS radius of spot diagram is calculated to be 26.372 µm, close to the diffractive limit resolution. The image resolution of human retina can be up to 30 µm with 135° FOV in theory. The three-stage cascaded SLO is more suitable for UWF fundus imaging. This study will be helpful for early screening and accurate diagnosis of various diseases in the peripheral retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call