Abstract

Poor user experience is caused by the current unstable operation of the two-wheel self-balancing vehicle control system, the high failure rate, and the poor accuracy and sensitivity of the control system (prone to deviation). Therefore, the work studied the two-wheel self-balancing vehicle system with the visual recognition of vehicle attitude. Kalman filtering and PID control algorithm were adopted to reduce the high frequency interference of the accelerometer and the low frequency error of the gyroscope, improve the response speed and control precision of motor to error, and ensure vertical control. The road images were acquired by a charge-coupled device vision sensor with the edge information extracted by the Laplacian operator, which ensures autonomous navigation control of a balance car. Based on the calculation of the distance between road axis and the existence detection of forward obstacles, the early warning mechanism was established through the calculation of the group agent to improve the safety performance of a balance vehicle. Experiments showed the improved control system has good stability, fast walking speed, strong anti-interference, and high security.

Highlights

  • The two-wheel self-balancing vehicle has a simple structure, flexible movement, easy driving, and convenient carrying, meeting the needs of energy saving and environmental protection

  • Based on “dynamic stability”, the gyroscope and acceleration sensor inside the vehicle are used to detect the change of vehicle attitude, and the servo control system is used to adjust the motor for a balance system

  • 3 Experimental results During the operation of the two-wheel self-balancing vehicle, it is necessary to complete vertical control, speed control, direction control, and dangerous attitude warning, which are achieved by changing the speed of the wheels

Read more

Summary

Introduction

The two-wheel self-balancing vehicle has a simple structure, flexible movement, easy driving, and convenient carrying, meeting the needs of energy saving and environmental protection. It is popular with more and more green travel enthusiasts and has become an important branch of mobile robot research. The automatic balance vehicle is called body-sensing car or Segway. Based on “dynamic stability”, the gyroscope and acceleration sensor inside the vehicle are used to detect the change of vehicle attitude, and the servo control system is used to adjust the motor for a balance system. When the balance vehicle reaches equilibrium, the motor automatically turns off (See Fig. 1)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call