Abstract

Heterojunction tunneling field-effect transistors (HTFETs) that use strained-silicon/strained-germanium type-II staggered band alignment for band-to-band tunneling (BBT) injection are simulated using a nonlocal quantum tunneling model. The tunneling model is first compared to measurements of gate- controlled BBT in previously fabricated strained SiGe diodes and is shown to produce good agreement with the measurements. The simulation of the gated diode structure is then extended to study HTFETs with an effective energy barrier of 0.25 eV at the strained-Si/strained-Ge heterointerface. As the band alignment, particularly the valence band offset, is critical to modeling HTFET operation, analysis of measured characteristics of MOS capacitors fabricated in strained-Si/strained-Ge/relaxed Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.5</sub> Ge <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.5</sub> hetero- junctions is used to extract a valence band offset of 0.64 eV at the strained-Si/strained-Ge heterointerface. Simulations are used to compare HTFETs to MOSFETs with similar technology parameters. The simulations show that HTFETs have potential for low-operating-voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dd</sub> < 0.5 V) application and exhibit steep subthreshold swing over many decades while maintaining high ON-state currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.