Abstract

In this study, we present a new theoretical model including Thue-Morse and double-period sequences as quasi-photonic crystals are incorporation with graphene and investigate the transmission properties of the THz waves in both structures using a straightforward computational method. We also consider properties of nonlinear conductivity in addition to surface linear conductivity for graphene. We observe the sharp peaks and proper forbidden bands are created in the range of 0.3 THz to 30 THz. In addition, we find that by considering the nonlinear term of graphene and engineering the structural parameters such as the chemical potential of graphene, number of layers and the incidence wave angle, transmission levels of peaks enhance scientifically and quality factor improve considerably. These results show that it would be possible to design of high-Q tunable filters with multi-stop bands in the THz regime which can reduce the noise associated with THz frequency peaks and increase the number of sharp frequency peaks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call