Abstract

Developing photosensitizers with high extinction coefficients, proper electronic structures, and steric properties is warranted for the dye-sensitized solar cells (DSCs) employing one-electron outer-sphere redox shuttles. DSCs incorporating Co(II/III)tris(1,10-phenanthroline)-based redox electrolyte and three synthesized organic dyes as photosensitizers (M14, M18, and M19) are described. The hexapropyltruxene group on the dyes retards the rate of interfacial back electron transfer from the conduction band of the nanocrystalline titanium dioxide film to the [Co(III)(phenanthroline)3]3+ ions, which enables attainment of high photovoltages approaching 0.9 V. The measurement of photocurrent transients shows that the mass transport limitation of the cobalt redox shuttle has been largely removed by using thin TiO2 films. DSCs sensitized with M14 in combination with the cobalt redox shuttle yield a DSC with an overall power conversion efficiency (PCE) of 7.2% under 100 mW cm–2 AM1.5 G illumination. The influence...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.