Abstract
This study presents a total sliding-mode-based genetic algorithm control (TSGAC) system for a linear piezoelectric ceramic motor (LPCM) driven by a newly designed hybrid resonant inverter. First, the motor configuration and driving circuit of an LPCM are introduced, and its hypothetical dynamic model is represented by a nonlinear function with unknown system parameters. In the hybrid resonant drive system, it has the merits of the high voltage gain from a parallel-resonant current source, and the invariant output characteristic from a two-inductance two-capacitance resonant driving circuit. Since the dynamic characteristics and motor parameters of the LPCM are highly nonlinear and time varying, a TSGAC system is therefore investigated based on direction-based genetic algorithm with the spirit of total sliding-mode control (TSC) and fuzzy-based evolutionary procedure to achieve high-precision position control under a wide operation range. In this control scheme, a GAC system is utilized to be the major controller, and the stability can be indirectly ensured by the concept of TSC without strict constraints and detailed system knowledge. In addition, the effectiveness of the proposed drive and control system is verified by numerical simulations and experimental results in the presence of uncertainties
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.