Abstract

This paper describes a computationally aided design process of a thin wall structure subject to dynamic compression in both axial and oblique directions. Several different cross sectional shapes of thin walled structures subjected to direct and oblique loads were compared initially to obtain the cross section that fulfills the performance criteria. The selection was based on multi-criteria decision making (MCDM) process. The performance parameters used are the absorbed crash energy, crush force efficiency, ease of manufacture and cost. Once the cross section was selected, the design was further enhanced for better crash performances by investigating the effect of foam filling, increasing the wall thickness and by introducing a trigger mechanism. The outcome of the design process was very encouraging as the new design was able to improve the crash performance by an average of 10%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.