Abstract
Thermal self supporting SOFC module was studied under various conditions for high energy conversion efficiency. In order to achieve high energy conversion efficiency even under partial load condition, SOFC module and system was designed to operate at intermediate temperature by using LaGaO 3 based oxide film electrolyte. Heat loss, Q heatloss is requested to be diminished as much as possible by decreasing heat radiation and exhaust gas heat from module. SOFC module with 700 W was successfully demonstrated in thermal self-supported state under various conditions. SOFC module can be thermally self-supported within a limited temperature range (841–886 K) but energy conversion efficiency decreases with decreasing current density, because of the limited fuel and air utilization from heat value requested for thermal self-support. In this study, the energy conversion efficiency of the 700 W module shows ca. 47% low heat value (LHV) at 700 W output power with fuel utilization of 75% and even at 250 W partial load, efficiency is ca. 30% achieved. For achieving the high energy conversion efficiency in partial load mode and self-thermal supported condition, decrease in heat loss, in particular, 400 W is strongly requested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.