Abstract
A neutral beam injection (NBI) heating system for the stellarator project Wendelstein 7-X (W7-X) is currently under construction at the Max Planck Institute for Plasma Physics (IPP) Greifswald, Germany. The NBI at W7-X is based on the similar system in operation on the tokamak ASDEX Upgrade at IPP in Garching, Germany, and makes use of radio-frequency-driven positive ion sources. Two NBI injectors are going to be installed in W7-X, each being capable of hosting four ion sources. Initially each injector is being equipped with two ion sources of 1.8 (2.5)MW beam power each in H (D). Accelerated positive ions are going to be neutralized and transported inside an NBI-box, which also hosts a residual ion dump, titanium sublimation pumps and a calorimeter. The beams are focused at a point 6.5m downstream of the ion sources and are injected into the plasma vessel of W7-X through two ports. The NBI boxes and their NBI ports are connected by NBI–torus interfaces, which are made of several components that minimize beam losses while protecting the port walls and bellows from energetic re-ionized particles and beam intersection. This paper describes the design of the NBI–torus interface, including the shape optimization of a beam scraper and the integration of beam diagnostics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.