Abstract
Due to the space missions limited budget, small satellite cluster or constellation would be an economical choice. From risk-sharing viewpoint, a number of smaller satellites have a significant reliability advantage over a bigger one. Generally, one satellite is subject to two types of uncertainties: structured uncertainty that represents some satellite parameter variation and the unstructured uncertainty that represents some kind of the satellite model error. On the other hand, the Satellite Attitude Control (SAC) design becomes more vulnerable to uncertainty disturbances like model error and moment-of-inertia variation as the satellite has great decrease in size and weight. This is the case for a microsatellite with mass less than 100 kg where the ACS performance and robustness become very sensitive to both kinds of uncertainties. As a result, the design of the SAC has to deal with both types of uncertainties which is associated with the drawback between controller performance and robustness. The purpose of this work is to model a microsatellite taking into account the uncertainties and to perform the Control System Design based on the mixed methodology via LMI optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.